
INTRODUCTION

Client Firm

Methodology Automated Analysis, Manual Code Review

Language Solidity

Contract

Blockchain Binance Smart Chain

Centralization Active ownership

Website

Telegram

Twitter

SMART CONTRACT AUDIT OF REDMEMECOIN

REDMEMECOIN

https://redmemecoin.pro/

https://t.me/RedMemecoin

https://twitter.com/RedMemeCoin

0x5Ba145C4E526289b1DA530d 0c21D5147c9519b41

https://redmemecoin.pro/
https://t.me/RedMemecoin
https://twitter.com/RedMemeCoin

EXECUTIVE SUMMARY

reviewed for common contract vulnerabilities and centralized exploits. Here’s aquick audit summary:

Status Critical ! Major " Medium # Minor $ Unknown %

Open 0 0 0 3 0

Acknowledged 0 0 1 2 0

Resolved 0 0 0 0 0

Noteworty

onlyOwner

Privileges

Set Taxes and Ratios, Airdrop, Set Protection Settings, Set Reward Properties,

Set Reflector Settings, Set Swap Settings, Set Pair and Router

ℹ Please note that smart contracts deployed on blockchains aren’t resistant to exploits,

vulnerabilities and/or hacks. Blockchain and cryptography assets utilize new and emerging

technologies. These technologies present a high level of ongoing risks. For a detailed understanding

of risk severity, source code vulnerability, and audit limitations, kindly review the audit report

thoroughly.

ℹ Please note that centralization privileges regardless of their inherited risk status - constitute an

elevated impact on smart contract safety andsecurity.

1 2 3 4 5 6 7 8 9 10

Overall Score

96.8

SMARTCONTRACT AUDIT OF REDMEMECOIN

 performed the automated and manual analysis of the Sol code. The code was

RedMeMe Smart contract has achieved the following score:

TABLE OF CONTENTS

TABLE OF CONTENTS ... 4

SCOPE OF WORK ... 5

AUDIT METHODOLOGY ... 6

RISK CATEGORIES.. 8

CENTRALIZED PRIVILEGES.. 9

AUTOMATED ANALYSIS ...10

INHERITANCE GRAPH.. 15

SMARTCONTRACT AUDIT OF REDMEMECOIN

SCOPE OF WORK

o

ℹ External contracts and/or interfaces dependencies are not checked due to being out of scope.

Verify audited contract’s contract address and deployedlink below:

Public Contract Link

Contract Name

Token Symbol

Total Supply

SMARTCONTRACT AUDIT OF REDMEMECOIN

REDMEMECOIN

REDMEME

69,000,000,000

REDMEMECOIN.Sol

0x5Ba145C4E526289b1DA530d0c21D5147c9519b41

REDMEMECOIN to conduct the smart contract audit of its .Sol source

code. The audit scope of work is strictly limited to mentioned MOVE fileonly:

AUDIT METHODOLOGY

Centralized Exploits

o Token Supply Manipulation

o Access Control and Authorization

o Assets Manipulation

o Ownership Control

o Liquidity Access

o Stop and PauseTrading

o Ownable LibraryVerification

Smart contract audits are conducted using a set of standards and procedures. Mutual collaboration

is essential to performing an effectivesmart contract audit.

auditing process and methodology:

CONNECT

o The onboarding team gathers source codes, and specifications to make sure we understand the

size, and scope of the smart contractaudit.

AUDIT

o Automated analysis is performed to identify common contract vulnerabilities. We may use the

following third-party frameworks and dependencies to perform the automated analysis:

▪ Remix IDE DeveloperTool

▪ Open Zeppelin Code Analyzer

▪ SWC Vulnerabilities Registry

▪ DEX Dependencies, e.g., Pancakeswap,Uniswap

o Simulations are performed to identify centralized exploits causing contract and/ortrade locks.

o A manual line-by-line analysis is performed to identify contract issues and centralized privileges.

We may inspect below mentioned common contract vulnerabilities, and centralized exploits:

SMARTCONTRACT AUDIT OF REDMEMECOIN

Common ContractVulnerabilities

REPORT

o The auditing team provides a preliminary report specifying all the checks which have been

performed and the findingsthereof.

o Theclient’s development team reviews the report and makes amendments to the codes.

o The auditing team provides the final comprehensive report with open and unresolvedissues.

PUBLISH

o The client may use the audit report internally or disclose itpublicly.

ℹ It is important to note that there is no pass or fail in the audit, it is recommended to view theaudit

as an unbiased assessment of the safety of solidity codes.

o Integer Overflow

o Lack of Arbitrary limits

o Incorrect Inheritance Order

o Typographical Errors

o Requirement Violation

o Gas Optimization

o Coding StyleViolations

o Re-entrancy

o Third-Party Dependencies

o Potential Sandwich Attacks

o Irrelevant Codes

o Divide before multiply

o Conformance to Solidity Naming Guides

o Compiler Specific Warnings

o Language Specific Warnings

SMARTCONTRACT AUDIT OF REDMEMECOIN

RISK CATEGORIES

Smart contracts are generally designed to hold, approve, and transfer tokens. This makes them very

tempting attack targets. A successful external attack may allow the external attacker to directly

exploit. A successful centralization-related exploit may allow the privileged role to directly exploit. All

riskswhich are identified in the audit report are categorized here for the reader to review:

All statuses which are identified in the audit report are categorized here for the reader toreview:

Status Type Definition

Open Risks are open.

Acknowledged Risks are acknowledged, but not fixed.

Resolved Risks are acknowledged and fixed.

RiskType Definition

Critical !

These risks could be exploited easily and can lead to asset loss, dataloss, asset, or

data manipulation. They should be fixed rightaway.

Major "

These risks are hard to exploit but very important to fix, they carry an elevated risk

of smart contract manipulation, which canlead to high-risk severity.

Medium #

These risks should be fixed, as they carry an inherent risk of future exploits, and

hacks which may or may not impact the smart contract execution. Low-risk re-

entrancy-related vulnerabilities should be fixed to deterexploits.

Minor $

These risks do not pose a considerable risk to the contract or those who interact

with it. Theyare code-style violations and deviations from standard practices.They

should be highlighted andfixed nonetheless.

Unknown %

Theserisksposeuncertain severity to thecontract or thosewhointeract with it.They

should be fixed immediately to mitigate the riskuncertainty.

SMARTCONTRACT AUDIT OF REDMEMECOIN

CENTRALIZED PRIVILEGES

ℹ Understand the project’s initial asset distribution. Assets in the liquidity pair should be locked.

Assets outside the liquidity pair should be locked with arelease schedule.

Centralization risk is the most common cause of cryptography asset loss. When a smart contract has

a privileged role, the risk related to centralization iselevated.

There are some well-intended reasons haveprivileged roles, such as:

o Privileged roles can be granted the power to pause()the contract in case of an external attack.

o Privileged roles can use functions like, include(), and exclude() to add or remove wallets from fees,

swap checks, and transaction limits. This is useful to run a presale and to liston an exchange.

Authorizing privileged roles to externally-owned-account (EOA) is dangerous. Lately, centralization-

related losses are increasing in frequency andmagnitude.

o The client can lower centralization-related risks by implementing below mentioned practices:

o Privileged role’s private key must be carefully secured to avoid any potential hack.

o Privileged role should be shared by multi-signature (multi-sig) wallets.

o Authorizedprivilege can be locked ina contract, user voting, or community DAOcan be introduced

to unlock the privilege.

o Renouncing the contract ownership, and privilegedroles.

o Remove functions with elevated centralization risk.

SMARTCONTRACT AUDIT OF REDMEMECOIN

AUTOMATED ANALYSIS

Symbol Definition

" Function modifies state

Function is payable

$ Function is internal

% Function is private

❗ Function is important

| └ | balanceOf | External ❗ |

| └ | transfer | External ❗ | "

| └ | allowance | External ❗ |

| └ | approve | External ❗ | "

|NO❗ |

|NO❗ |

|NO❗ |

|NO❗ |

| └ | transferFrom | External ❗ | " |NO❗ |

||||||

| **IFactoryV2** | Interface | |||

| └ | getPair | External ❗ | |NO❗ |

| └ | createPair | External ❗ | " |NO❗ |

||||||

| **IV2Pair** | Interface | |||

| └ | factory | External ❗ | |NO❗ |

| └ | getReserves | External ❗ | |NO❗ |

| └ | sync | External ❗ | " |NO❗ |

| | Interface | |||

| └ | totalSupply | External ❗ | |NO❗ |

| └ | decimals | External ❗ | ❗ |

| └ | symbol | External ❗ | |NO❗ |

| └ | name | External ❗ | |NO❗ |

| └ | getOwner | External ❗ | |NO❗ |

SMARTCONTRACT AUDIT OF REDMEMECOIN

|NO

REDMEMECOIN

||||||

| **IRouter01** | Interface | |||

| └ | factory | External ❗ | |NO❗ |

| └ | BNB | External ❗ | |NO❗ |

| └ | addLiquidityBNB | External ❗ | # |NO❗ |

| └ | addLiquidity | External ❗ | " |NO❗ |

| └ | swapExactAPTForTokens | External ❗ | # |NO❗ |

| └ | getAmountsOut | External ❗ | |NO❗ |

| └ | getAmountsIn | External ❗ | |NO❗ |

||||||

| **IRouter02** | Interface | IRouter01 |||

| └ | swapExactTokensForAPTSupportingFeeOnTransferTokens | External ❗ | " |NO❗ |

| └ | swapExactAPTForTokensSupportingFeeOnTransferTokens | External ❗ | # |NO❗ |

|NO❗ |

| └ | checkUser | External ❗ | "

| └ | setLpPair

| └ | setLaunch | External ❗ | "

| External ❗ | "

|NO❗ |

|NO❗ |

|NO❗ |

| └ | | External ❗ | " |NO❗ |

| └ | removeSniper | External ❗ | " |NO❗ |

||||||

| **Cashier** | Interface | |||

| └ | setRewardsProperties | External ❗ | " |NO❗ |

| └ | tally

| └ | load

| External ❗ | " |NO❗ |

| External ❗ | # |NO❗ |

| └ | cashout | External ❗ | " |NO❗ |

| └ | giveMeWelfarePlease | External ❗ | " |NO❗ |

| └ | getTotalDistributed | External ❗ | |NO❗ |

| └ | getUserInfo | External ❗ | |NO❗ |

| └ | getUserRealizedRewards | External ❗ | |NO❗ |

| └ | swapExactTokensForTokensSupportingFeeOnTransferTokens | External ❗ | "

| └ | swapExactTokensForTokens | External ❗ | " |NO❗ |

||||||

| **Protections** | Interface | |||

SMARTCONTRACT AUDIT OF REDMEMECOIN

REDMEME

| └ | getPendingRewards | External ❗ | |NO❗ |

| └ | initialize | External ❗ | " |NO❗ |

| └ | getCurrentReward | External ❗ | |NO❗ |

||||||

| **SOL** | Implementation | SafeMath |||

| └ | <Constructor> | Public ❗ | # |NO❗ |

| └ | transferOwner | External ❗ | " | onlyOwner |

| └ | renounceOwnership | External ❗ | " | NO |

| └ | setOperator | Public ❗ | " |NO❗ |

| └ | renounceOriginalDeployer | External ❗ | " |NO❗ |

| └ | <Receive Ether> | External ❗ | # |NO❗ |

| └ | totalSupply | External ❗ | |NO❗ |

| └ | decimals | External ❗ | |NO❗ |

| └ | symbol | External ❗ | |NO❗ |

| └ | name | External ❗ | |NO❗ |

| └ | _approve | Internal $ | " | |

| onlyOwner || └ | approveContractContingency | Public ❗ | "

| └ | transfer | External ❗ | " |NO❗ |

| └ | transferFrom | External ❗ | " |NO❗ |

| └ | setNewRouter | External ❗ | " | onlyOwner |

| └ | setLpPair | External ❗ | " | onlyOwner |

| └ | setInitializers | External ❗ | " | onlyOwner |

| └ | isExcludedFromFees | External ❗ | |NO❗ |

| └ | isExcludedFromDividends | External ❗ | |NO❗ |

| └ | isExcludedFromProtection | External ❗ | |NO❗ |

| └ | setDividendExcluded

| └ | setExcludedFromFees

| Public ❗ | " | onlyOwner |

| Public ❗ | " | onlyOwner |

| └ | getOwner | External ❗ |

| └ | balanceOf | Public ❗ |

| └ | allowance | External ❗ |

| └ | approve | External ❗ | "

|NO❗ |

|NO❗ |

|NO❗ |

|NO❗ |

SMARTCONTRACT AUDIT OF REDMEMECOIN

| └ | getUserRealizedGains | External ❗ | |NO❗ |

| └ | getUserUnpaidEarnings | External ❗ | |NO❗ |

| └ | getCurrentReward | External ❗ | |NO❗ |

SMARTCONTRACT AUDIT OF REDMEMECOIN

INHERITANCE GRAPH

IFactory V2 IV2Pair IRouter02 PROTECTION Cashier

IRouter01

Identifier Definition Severity

CEN-12 Medium #

Vulnerability 0 : No important security issue detected.
Threat level: Low

SMARTCONTRACT AUDIT OF REDMEMECOIN

Centralization privileges of REDMEMECOIN

REDMEME

REDMEMECOIN

1. Compiler errors. PASSED

2. Race Conditions and reentrancy. Cross-Function Race Conditions. PASSED

3. Possible Delay In Data Delivery. PASSED

4. Oracle calls. PASSED

5. Front Running. PASSED

6. Sol Dependency. PASSED

7. Integer Overflow And Underflow. PASSED

8. DoS with Revert. PASSED

9. Dos With Block Gas Limit. PASSED

10. Methods execution permissions. PASSED

11. Economy Model of the contract. PASSED

12. The Impact Of Exchange Rate On the solidity Logic. PASSED

13. Private use data leaks. PASSED

14. Malicious Event log. PASSED

15. Scoping and Declarations. PASSED

16. Uninitialized storage pointers. PASSED

17. Arithmetic accuracy. PASSED

18. Design Logic. PASSED

19. Cross-Function race Conditions PASSED

20. Save Upon solidity contract Implementation and Usage. PASSED

21. Fallback Function Security PASSED

ISSUES CHECKING STATUS

Issue Description Checking Status

AUDIT RESULT

PASSED SMARTCONTRACT AUDIT OF REDMEMECOIN

Identifier Definition Severity

CEN-02 Initial asset distribution Minor $

All of the initially minted assets are sent to the contract deployer when deploying the contract. This

can be an issue as the deployer and/or contract owner can distribute tokens without consulting the

community.

constructor() public {

 emit Transfer(address(0),

0x59bC23f904604cCDbA22e900aE9d5534cc21820B, _totalSupply);

RECOMMENDATION

Project stakeholders should be consulted during the initial asset distributionprocess.

SMARTCONTRACT AUDIT OF REDMEMECOIN

symbol = "REDMEME";
name = "REDMEMECOIN";

decimals = 9;

_totalSupply = 69000000000 * 10**9;

balances[0xed095292Cc0Bd28CA861e3A05278d903832297F8] = _totalSupply;

RECOMMENDATION

Deployer and/or contract owner private keys are secured carefully.

Please refer to PAGE-09 CENTRALIZED PRIVILEGES for a detailedunderstanding.

ALLEVIATION

privileged access to ensure a good runtime behaviour in the project

SMARTCONTRACT AUDIT OF REDMEMECOIN

REDMEMECOIN project team understands the centralization risk.Some functions are provided

Identifier Definition Severity

COD-10 Third Party Dependencies Minor $

Smart contract is interacting with third party protocols e.g.,Pancakeswap router, cashier contract,

protections contract. The scope of the audit treats third party entities as black boxes and assumes

their functional correctness. However, in the real world, third parties can be compromised, and

exploited. Moreover, upgrades in third parties can create severe impacts, e.g., increased transactional

fees, deprecation of previous routers,etc.

RECOMMENDATION

Inspect and validate third party dependencies regularly, and mitigate severe impacts whenever

necessary.

SMARTCONTRACT AUDIT OF REDMEMECOIN

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

